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Abstract

The interactions between a plasma and magnetic field are of
great interest to the astrophysics and fusion power communities
and may be modeled under a wide range of simplifying assump-
tions. Here, we investigate the fully electromagnetic ideal two-
fluid plasma model and compare results with the ideal magneto-
hydrodynamic (MHD) model. In contrast to the MHD approach
the two fluid-model simulates ions and electrons separately, al-
lowing the assumptions of quasi-neutrality, small Larmor radius
and small Debye length to be discarded. A two dimensional nu-
merical method has been developed which draws on adaptive
spatial resolution and locally implicit time stepping to allow for
efficient simulation of the two-fluid plasma model. The Kelvin-
Helmholtz instability, with background magnetic field, is sim-
ulated over a wide range of plasma regimes. Comparison with
hydrodynamic and MHD solutions demonstrates the ability of
the two fluid model to bridge the gap between these limiting so-
Iutions. The two fluid solutions also demonstrate various stages
in the suppression of the Kelvin-Helmholtz instability due to the
presence of a background magnetic field.

Introduction

A plasma is a gas that has undergone significant ionisation and
is thus composed of its constituent parts, ions, electrons and
neutrals. The presence of an electromagnetic field, whether im-
posed or self generated, can thus influence the motion of the
plasma through interaction with the charged particles. An often
used model for describing the interaction between a plasma and
a magnetic field is the magneto-hydrodynamic (MHD) model.
This covers the regime where the motion of the ions and elec-
trons are exactly coupled, allowing no charge separation, lead-
ing to the gas behaving like an electrically conducting fluid. At
the other end of the spectrum, where there is little interaction
between plasma species and velocity space is dominated by an-
isotropic behaviour, the most suitable approach is to model the
plasma through kinetic theory and the collisionless Boltzmann
equation. There is also the case when the plasma length scales
are so large, in comparison to the characteristic length scale, that
there is essentially no electromagnetic effects and the plasma
behaves like a neutral fluid. In the intermediate regime we have
plasma species of varying charge that may interact, strongly or
weakly, via the electromagnetic fields. Depending on the as-
sumptions that are made, various plasma models may be devel-
oped that inhabit this intermediate space between the MHD and
hydrodynamic or kinetic approximations. In this case the ideal
two-fluid model is adopted which retains a finite speed of light
along with charge separation effects.

Two-fluid model equations

The equations that make up the two-fluid model are the Euler
equations, with additional source terms, and Maxwell’s equa-
tions of electromagnetism. However, in this paper we will only
present the non-dimensional form that was used to generate the

presented results.

Non-dimensionalisation

The particular non-dimensional form used herein is given fol-
lowing the definition of various reference parameters shown in
table 1.

Name Definition Name Definition
Length X0 Charge q0
Speed uo Mass mg
Magnetic B Number "
field 0 density 0

Table 1: Non-dimensionalising reference parameters

The non-dimensional variables are then given as follows,
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Plasma properties

The interaction between plasma species, o, and the electric, K,
and magnetic, B, fields is governed by the Larmor radius, d,
and Debye length, dp, which are given in non-dimensional form
according to,
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Note that these parameters may be specified for each species.
When used in the governing equations they are given with re-
spect to the reference parameters, typically for the ion species.
The Larmor radius reflects the degree of interaction between
charged particles and the electromagnetic fields while the De-
bye length may be used as an indication of the degree of charge
separation.

Euler equations

The Euler equations for an ideal gas, with specific heat ratio of
v, are given for each species according to,
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and I is the identity tensor. Note that the coupling with the
electromagnetic fields is accomplished via the source terms, the
strength of which are governed by the Larmor radius and Debye
length, as defined earlier.

Maxwell’s equations

The electromagnetic fields are evolved according to Maxwell’s
equations, given here in non-dimensional form,
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Coupling with the species evolution equations is again through
source terms with their influence dictated by the plasma regime.

To enable comparison between the magnetohydrodynamic and
two-fluid plasma models, the magnetic field interaction parame-
ter, B, was used. Due to the specific non-dimensionlisation used
for the two-fluid equations there must be a two-fluid specific
form of this parameter. The MHD and two-fluid values for 3
are thus given according to
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Implementation

In order to solve this coupled system of equations at high effec-
tive resolutions in reasonable time the adaptive mesh refinement
(AMR) framework Chombo [2] was used. The base numerical
method consists of finite volume scheme with two stage second
order Runge-Kutta time integrator [4] with van Leer limited in-
terface values for flux calculation. The two-fluid plasma model
is solved with species fluxes calculated according to the HLLC
approximate Riemann solver [7] and electromagnetic fluxes cal-
culated from the HLL interface state [3]. The contribution from
source terms is solved for locally with the implicit method of
Abgrall et al. [1]. The MHD solution is obtained for a single
species by using an MHD capable HLLE approximate Riemann
solver [5, 7] that accounts for the fluid and magnetic field fluxes.
The hydrodynamic equations may be solved for with the same
method as for the two fluid mode but with the species charge
set to zero. The divergence constraints of Maxwell’s equations

and the MHD equations are enforced through application of the
projection method.

Verification

The numerical method was used to simulate a Riemann problem
with initial conditions shown in table 2. The plasma regime
was set according to dy = 1/300 and dp = dr/100 with ¢ = 100
and 7 /i; = 1/1836. The simulation domain was discretised with
a uniform grid of 1024 cells over a domain of 0 < X < 1 with
results shown at a time of f = 0.1 in figure 1. The solution shows
that the numerical method is able to reproduce the solution by
Loverich [6] with all features of the combined density profile
being captured, albeit with lower numerical dissipation. This
implementation of the two-fluid plasma model is thus suitable
for further work.

Variable x<1/2 x>1/2
Pir Pe 1, /i, 0.125, 0.125 e/
U 0 0
p 0.5 0.05
B 0.75,1,007  (0.75,—1,0)T
B 0 0

Table 2: Riemann problem initial conditions.
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Figure 1: One dimensional combined density profile.

Results

The results to be presented herein are for the Kelvin-Helmholtz
instability (KHI). The computational domain was —1/2 < x <
1/2 and —50 <y < 50 with a square Cartesian mesh having an
effective resolution of 512 cells across the domain. The domain
was periodic in x and had extrapolating boundary conditions in
y. The initial flow field had uniform total pressure, p = 1, and
density given by the species mass, p = . For the MHD case
p = 1. The velocity field for all species was given by,

Uy = Uy o tanh (1n39§) . Uy =Uygsin(¢2mx) 2~ (13)

where U, o was the x-velocity on either side of the shear layer
and Uy was the perturbation velocity of wavenumber ¢. The
widths of the shear layer and velocity perturbation were given
by a and b and defined as the distance between symmetric points
on a function that cover 95% of the maximum variation.

Simulations were carried out with Uy o = Uy g = 0.5k, a = 0.05,
b =0.1 and ¢ = 2. The value for k was set by the sound-speed
of the primary species (ions). The magnetic field was defined
to lie parallel to the shear layer with Byup = Bor = 8. For
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Figure 2: Hydrodynamic KHI ion (x < 0) and electron (x > 0) interface for f = 0.6, 7 = 1.0 and 7 = 2.0.
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Figure 3: Two-fluid KHI interface location for ions (x < 0) and electrons (x > 0). Columns show solutions at i=0.6,1.0,2.0. Rows
show d;, =dp =0.1,0.01,0.001, 0.0001
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Figure 4: Magnetohydrodynamic KHI interface for 7 = 0.6, 7 = 1.0 and 7 = 2.0.



the two-fluid simulations the Larmor radius and Debye length
were varied according to 0.0001 < dAL,dAD < 0.1 with a non-
dimensional light speed of ¢ = 50. The mass of the ions was
set to M; = 1 and electrons 777, = 0.01, the species charge was
Gi = —qe. = 1. To aid with visualising the evolution of the KHI
a passive scalar was defined that allowed tracking of the initial
U, = 0O interface. It is this interface that will be shown in figure
2 to figure 4.

Hydrodynamic

The solution of the hydrodynamic case consisted of the Euler
solution for two independent fluids. Each fluid was defined ex-
actly as for the two fluid case but with a charge of zero. Fig-
ure 2 shows the interface location for the heavy (ion) and light
(electron) species. It may be seen that the light species exhibits
accelerated roll-up. The simulation was terminated at a time of
f =2 just prior to significant interaction between the two rollers.

Two-fluid

The introduction of charge to each of the species then allows
for interaction with both the self generated electromagnetic and
initial magnetic field. The first simulation with two-fluid ef-
fects, shown in the first row of figure 3, was with large dy and
dp leading to relatively weak interaction between the fields and
the species as well as between the species themselves. Min-
imal changes are thus observed in the ion interface structure,
compared to the hydrodynamic case, while there are significant
changes to the electron interface. It is evident that the ions are
less affected by the fields than the electrons, as expected due to
their disparity in momentum, with little correlation between the
two species.

With a decrease in ch and ch to 0.01, shown in the second row
of figure 3, there was a a marked increase in the effect of the
electromagnetic field on the electrons leading to complete sup-
pression of the electron KHI. The ion species was still only
mildly affected, with the characteristic roll-up of the interface
still evident. It is apparent that the strength of interaction be-
tween the species was not yet sufficient for the electrons to have
much influence over the ions. This result also shows that the dif-
ferences in species interfaces indicates that for a given magnetic
field strength the suppression of the KHI within each species is
heavily dependent on the plasma parameters.

The solution with d;, = dp = 0.001, shown in the third row of
figure 3, shows a significant change. It is evident that the cou-
pling strength has increased to the point where the ion interface
structure is being somewhat imposed upon the electrons, the in-
terface is no longer almost flat, while the flattening influence of
the electrons is being felt in the ion species. The final frame of
this sequence also shows a collapse of the roller structure that
has been present in the ions for previous plasma parameters.

Setting ch = dAD = 0.0001 further increases the strength of cou-
pling between the two species with the interface structure shown
to be nearly identical for the time slices shown in the final row
of figure 3. The electron and ion species both exhibit the same
degree of KHI suppression with a roller being allowed to form
before being forced back by the action of the imposed mag-
netic field. The final interface is not a clean one however, with
smaller scale features introduced around the location of the ini-
tial vertical velocity perturbations.

Magnetohydrodynamic

The final result, shown in figure 4, illustrates the MHD solution
to the KHI problem. This is the solution that could be expected
from the two-fluid system of equations in the limit of small Lar-

mor radius and Debye length. The interface shows some initial
roll-up, but this is soon reversed by the action of the magnetic
field, resulting in a smooth interface at final time. This solu-
tion does not show any of the small scale features present in the
two-fluid simulations with small plasma parameters.

Discussion & Conclusion

Taking the series of solutions shown in figure 2, figure 3 and
figure 4, a progression from completely un-suppressed KHI, to
moderately suppressed KHI, may be observed. As the plasma
parameters are varied in the two-fluid simulations there appears
to be three distinct stages; 1) the electron KHI is fully sup-
pressed, 2) interaction between the species increases with de-
creased KHI in the ions and a reversion from the fully sup-
pressed electron KHI, and 3) nearly complete correlation be-
tween species and moderate suppression of both species KHI.
The two-fluid results also show a progression towards the MHD
solution, as expected, although higher frequency disturbances in
the flow detract somewhat from this.

Finally, it has been shown in this work that it is practical to solve
the two-fluid plasma model with physical parameters approach-
ing that of reality. This model has also shown the ability to
bridge the transition between pure hydrodynamics, dp =dp =
oo, and the MHD limit, d;, = dp = 0. The use of a magnetic field
to suppress the plasma KHI was also demonstrated and shown
to depend on the plasma regime, with the electron and ion KHI
being suppressed to varying degrees throughout the range of
tested values.
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